
Microsoft Fabric Festival
Dive into the Lakehouse

Thor Wetche

Data Engineer

thwe@inspari.dk

Today’s speakers

Mathias Ragn

Senior Data Engineer

mrag@inspari.dk

15 November 2023Microsoft Fabric3

Agenda
Microsoft Fabric for Data Engineers

Demo Project, Architecture and Approach

Demo and Choice discussion

Wrap-up & Takeaways

1

2

3

4

Data Engineer

Personal profile

Kayla is a Data Engineer at EnergyCorp

Tasks:

• Specialization in extracting, transforming and loading data

• Designing and building scalable data pipelines

• Exposing data models

Skills

ETL Processes

Data modeling

Python

Age:

41

Personal Data

Job Title:

Data Engineer

Company:

EnergyCorp

Data Engineer

Taking data to the next level

SQL

• Robust data processing tools

• Options for interacting

with data sources

• Scalable infrastructure

• Tailor deliveries to users

• Futureproof platform

What are Kayla’s
needs?

• Too many rigid tools

• Integration challenges

• Infrastructure cannot be scaled

• Outdated technology and lack

of support

What are Kayla’s
pains?

• Robust data processing tools

• Options for interacting

with data sources

• Scalable infrastructure

• Tailor deliveries to users

• Futureproof platform

What are Kayla’s
needs?

Fabric as an Engineering Enabler

• Many options for powerful data processing and integration

• Intuitive and familiar user experience

• Proof of concepts without managing infrastructure

• Fabric is continually updated and enhanced

A wild project
appeared!

Analyzing Electricity Prices and
Energy Production in Denmark

1

2

3

The data
Electricity production (streaming source) and prices (fetched hourly) from REST API.

The challenge
• Ingesting production data in a streaming flow directly into Power BI

• Expose a validated quality data model

• The rest of Kayla’s team prefers Python

The solution
The Lakehouse integrates streaming and batch data seamlessly, exposing both to

Power BI

Stream processing

Batch processing

A Lambda architecture allows for real-time insights for business
users and long-term persistence for AI/ML use cases

Batch extract

Notebooks
(Schedule: 1h)

Stream ingest

Eventstream

Data Storage and

Processing

Lakehouse

Stream Data Storage

KQL Database

Near real-time Model

Dataset
(Refresh 5min interval)

<Functionality>

<Fabric component>

Data Transformation

Notebooks

Stream source

Event Hub

Energy Production

Batch source

Energinet API

Endpoint: Pricelist

Semantic Model

Dataset

Orchestration

Data Pipeline
(Schedule: 1h)

Publisher

Energinet

Presentation

Power BI App

Solution Buildup

1. Ingest price data
Data is pulled hourly from REST API using a Notebook

2. Stream production data
Data is streamed from event hub into KQL

and Lakehouse

3. Transform data
Python executed in Notebooks are utilized to

transform data into classic star schema

4. Blend stream & Batch in Power BI
Data is exposed in Power BI

5. Orchestration
Workloads are triggered by the use of Data

Factory

Starting point: requirements have been delivered by management

Solution Buildup

1. Ingest price data
Data is pulled hourly from REST API using a Notebook

2. Stream production data
Data is streamed from event hub into KQL

and Lakehouse

3. Transform data
Python executed in Notebooks are utilized to

transform data into classic star schema

4. Blend stream & Batch in Power BI
Data is exposed in Power BI

5. Orchestration
Workloads are triggered by the use of Data

Factory

Starting point: requirements have been delivered by management

1. Ingest Price Data

Considerations for Experience choice

A Notebook was chosen because:

• Pro: Ability to be scheduled by other resources, e.g.

Pipelines

• Pro: Ability to integrate to external APIs and handle

integration errors using Python

• Pro: Can easily persist data in a Lakehouse experience

• Con: Testability and code re-use is not well supported in

a Notebook experience

What other options do I have?

• Azure Data Factory/Fabric Pipeline

• Azure Functions

• Logic App

• Fabric Data Flow Gen 2.

Requirements

• Ingest data on an hourly schedule

• Integrate to an external API

Solution Buildup

1. Ingest price data
Data is pulled hourly from REST API using a Notebook

2. Stream production data
Data is streamed from event hub into KQL

and Lakehouse

3. Transform data
Python executed in Notebooks are utilized to

transform data into classic star schema

4. Blend stream & Batch in Power BI
Data is exposed in Power BI

5. Orchestration
Workloads are triggered by the use of Data

Factory

Starting point: requirements have been delivered by management

2. Stream Production data

Considerations for Experience choice

An Eventstream and KQL Database was chosen because:

• Pro: Ability to write to many sinks (KQL Database,

Lakehouse) by single Experience (Eventstream)

• Pro: High Ease of use

• Pro: Scales to large amount of messages

• Con: Transformation capabilities are few.

Requirements

• Integrate to Event Hub that receives streaming data
What other options do I have?

• Azure Stream Analytics

• Spark Streaming / Spark Job Definition

• Azure Functions

Solution Buildup

1. Ingest price data
Data is pulled hourly from REST API using a Notebook

2. Stream production data
Data is streamed from event hub into KQL

and Lakehouse

3. Transform data
Python executed in Notebooks are utilized to

transform data into classic star schema

4. Blend stream & Batch in Power BI
Data is exposed in Power BI

5. Orchestration
Workloads are triggered by the use of Data

Factory

Starting point: requirements have been delivered by management

Conceptual model
Understand before you build

3. Transform data

Considerations for Experience choice

As the team surrounding Kayla prefer to code in Python,

Notebooks was chosen because:

• Pro: Fits well for the company’s context

• Pro: Highly flexible with great version control

• Pro: Rich ecosystem of libraries and tools

• Con: Performance overhead and dependency

management of libraries / versioning

Requirements

• Integrate natively with the Lakehouse experience

• Allow for defining transformations in Python, SQL, etc.

• Allow for Version Control and Collaboration

What other options do I have?

• Warehouse with SQL:

• Highly performant

• Widely used language

• Limited flexibility

Solution Buildup

2. Stream production data
Data is streamed from event hub into KQL

and Lakehouse

3. Transform data
Python executed in Notebooks are utilized to

transform data into classic star schema

4. Blend stream & Batch in Power BI
Data is exposed in Power BI

5. Orchestration
Workloads are triggered by the use of Data

Factory

Starting point: requirements have been delivered by management

1. Ingest price data
Data is pulled hourly from REST API using a Notebook

4. Blend stream & Batch in

Power BI

Considerations for Experience choice

A Power BI Semantic model was chosen because:

Pro: Fabric ensures a cohesive and consistent user

experience across different tools and platforms

Pro: Data sharing capabilities

Con: Limited in terms of highly specialized or custom

visualizations compared to a fully custom web application

Requirements

• Possibility of exposing data in a Semantic Mode

• Possibility of creating Measures using DAX

What other options do I have?

• Azure Data Explorer

• Great for showing real-time analytics,

but less so for a dimensional model

• Custom Web Application

• Highly customizable

• High effort and expensive compared

to other solutions

Solution Buildup

2. Stream production data
Data is streamed from event hub into KQL

and Lakehouse

3. Transform data
Python executed in Notebooks are utilized to

transform data into classic star schema

4. Blend stream & Batch in Power BI
Data is exposed in Power BI using a composite model

5. Orchestration
Workloads are triggered by the use of Data

Factory

Starting point: requirements have been delivered by management

1. Ingest price data
Data is pulled hourly from REST API using a Notebook

5. Orchestration

Considerations for Experience choice

Data Factory is chosen as orchestration tool because:

Pro: Seamless integration with other Fabric artifacts

Pro: Trigger functionality

Con: Best suited for simple workflows

Requirements

• Simple to set up

• Must work with Artifacts in Fabric

What other options do I have?

• Azure Functions

• Spark Job Definitions

Solution Wrap-up

1. Ingest price data
Data is pulled hourly from REST api using a Notebook

2. Stream production data
Data is streamed from event hub into KQL

and Lakehouse

3. Transform data
Python executed in Notebooks are utilized to

transform data into classic star schema

4. Blend stream & Batch in Power BI
Data is exposed in Power BI

5. Orchestration
Workloads are triggered by the use of Data

Factory

Starting point: requirements has been delivered by management

Takeaways

Rapid development

Not dealing with infrastructure

allows for rapid building, testing

failing and succeeding

OneLake: OneDrive for data

OneLake provides a single, unified

storage system, where discovery and

sharing of data of any format between

users and applications is easy

End-to-end solution

A complete, unified analytics platform

that brings together all the data and

analytics tool you need

Collaboration

Data teams can collaborate in a single

workspace, on the same copy of data,

with centralized administration,

governance, and compliance toolsSkillset compatibility

Engineers can work with different

frameworks and languages

Microsoft Fabric benefits for the Data Engineer

See you Backstage
at the Festival,
ask me anything!

	Standardsektion
	Slide 1: Microsoft Fabric Festival
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Fabric as an Engineering Enabler
	Slide 8: A wild project appeared!
	Slide 9: Analyzing Electricity Prices and Energy Production in Denmark
	Slide 10: A Lambda architecture allows for real-time insights for business users and long-term persistence for AI/ML use cases

	Demo time
	Slide 11: Solution Buildup
	Slide 12: Solution Buildup
	Slide 13: 1. Ingest Price Data
	Slide 14: Solution Buildup
	Slide 15: 2. Stream Production data
	Slide 16: Solution Buildup
	Slide 17: Conceptual model
	Slide 18: 3. Transform data
	Slide 19: Solution Buildup
	Slide 20: 4. Blend stream & Batch in Power BI
	Slide 21: Solution Buildup
	Slide 22: 5. Orchestration
	Slide 23: Solution Wrap-up
	Slide 24: Takeaways
	Slide 25: See you Backstage at the Festival, ask me anything!

